

BRINGING YOUR BUSINESS INTO FOCUS

There's a lot to lose when shredding your hard drives

Neil Peters-Michaud, CEO Cascade Asset Management





# There's a lot to lose . . . from shredding

#### Agenda

- 1. Value choices to shred vs. wipe drives
- 2. Understanding data sanitization technology
- 3. Customer case study
- 4. Recommendations

#### Speaker Bio

- Neil Peters-Michaud
- CEO, Cascade Asset Management
- 25 year ITAD/ITAM career
- Univ. of Wisconsin surplus mngr
- CHAMP, MBA
- iNEMI HDD value recovery team






















## Electronic sanitization tools



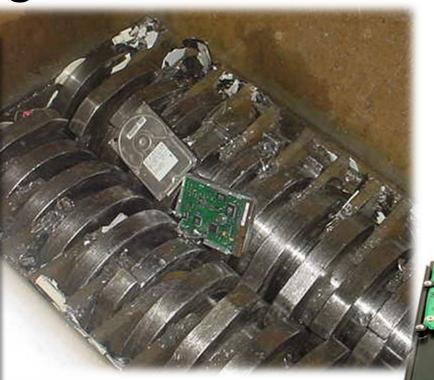












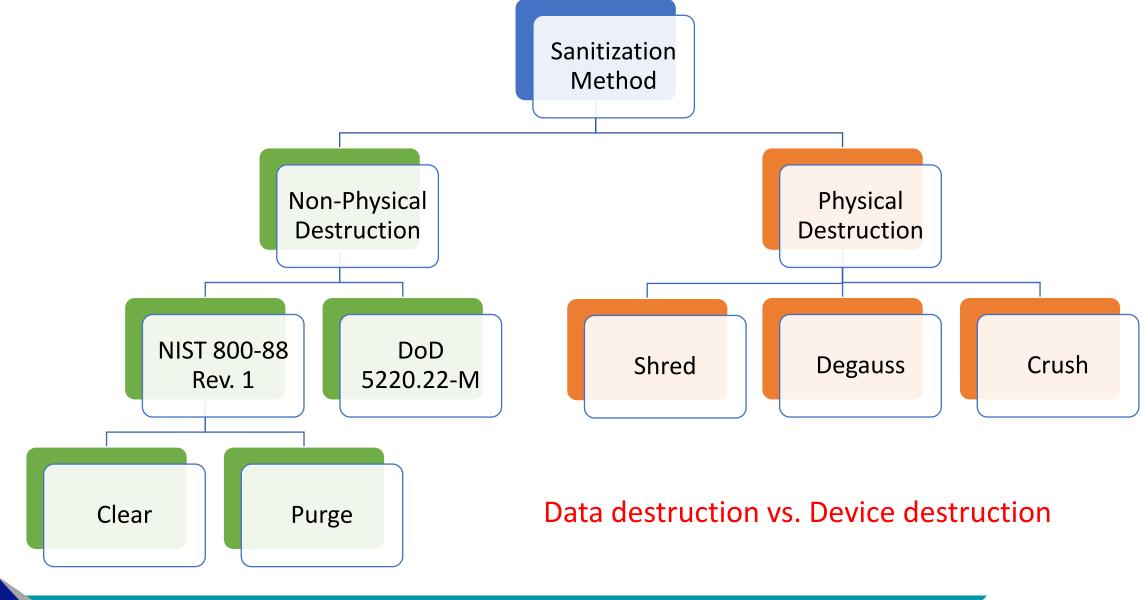





# Media shredding


























## DEMONSTRATION PROJECT 5: CREATING A BUSINESS MODEL TO SUPPORT REUSE & RECOVERY

#### DEMONSTRATION PARTICIPANTS

Carleen Matuska, Microsoft Ines Sousa, Google Ikenna Ike, Google Hongyue Jin, University of Arizona Neil Peters-Michaud, Cascade Asset Management

#### LEADERS

Gary Spencer, GEODIS SCO USA Carol Handwerker, CMI, Purdue University









# Circular economy

Move from a linear "use and dispose" model to one that recovers value throughout the lifecycle process.

Mining and Minerals Manufacturing Material **HDD** Component Recovery Manufacturer Dismantle & Remanufacture HDD OEM UM Wipe & Reuse Redistribute Retail/Service Provider Maintain/ Prolong Users Collection Energy Recovery Landfill

Source: iNEMI, "Value Recovery Project, Phase 2"







#### REFURBISH / REMANUFACTURE:



Once servers from data centers are decommissioned, they are sent back to the central hub. At the hub servers are dismantled and de-kitted to their usable components (CPU, motherboard, Flash devices, hard disks, memory modules and other components). After quality inspection, components are stored to be reused as refurbished inventory.

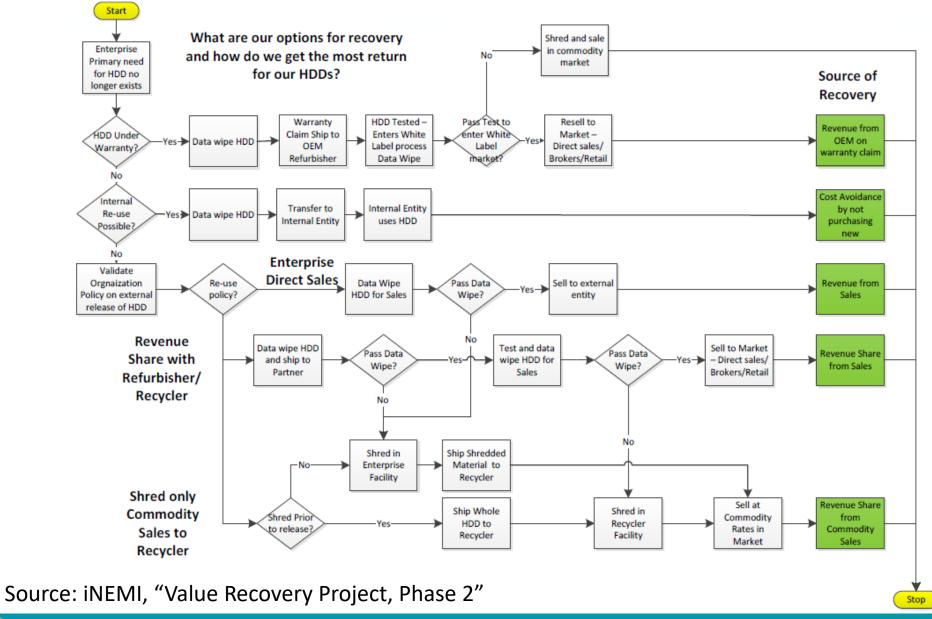
Google custom builds its own servers for data centers through a program called the Servers Build program. Refurbished parts (mentioned above) are used to build remanufactured servers and are then deployed back into data centers. In Google data centers, there is a mix of the servers running the latest technology platforms and also older platforms. Once components are in inventory, there is no distinction made between refurbished and new inventory, both are considered equivalent.



CIRCULAR ECONOMY AT WORK IN GOOGLE DATA CENTERS

Case Study September 2016

Authors: Shobhit Rana Kate Brandt















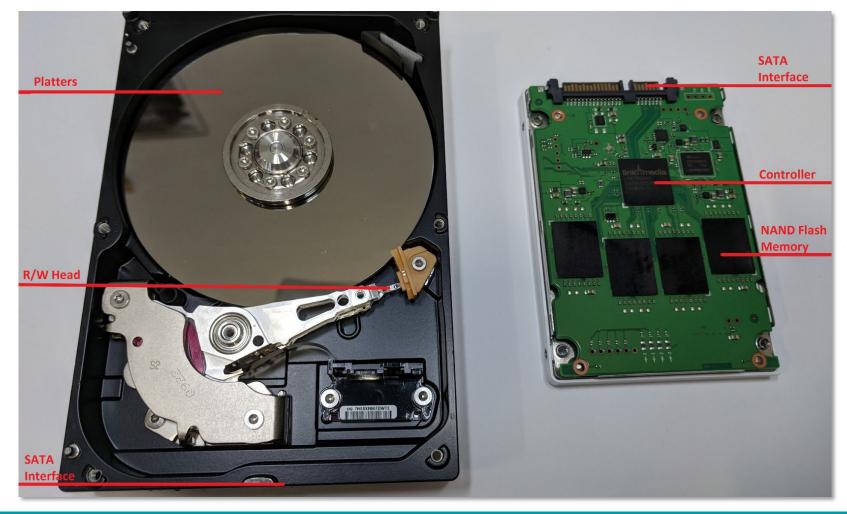





#### Example value of a 1 TB 3.5" HDD

| Recovery<br>Method                | Value As Is?              | Re-Use Method                                                   | Value when recovered |
|-----------------------------------|---------------------------|-----------------------------------------------------------------|----------------------|
| Warranty Claim                    | No – needs refurbished    | Refurbish and resale as White Label drive – prorated value      | \$10 to \$35         |
| Internal Re-use                   | Yes                       | Data Wipe and avoid purchase of new drive                       | \$42                 |
| Enterprise<br>Direct Sales        | Yes                       | Data wipe and directly manage retail sales                      | \$22                 |
| Revenue<br>Share with<br>Recycler | Yes                       | Data wipe and have Recycler manage sales – 50% share back model | \$11                 |
| Shred for<br>Commodities          | No – needs to be shredded | Shred drive for commodity recovery – mixed aluminum             | \$0.44               |

<sup>\*</sup>Value recovered does not include bundled within a server, which could drive the individual value of the drive higher


Source: iNEMI, "Value Recovery Project, Phase 2," August 2019







# Understanding data sanitization technology









#### **Hard Drive Disk**

- » Records data on platters
- » Available in different sizes
  - » Most common sizes are 3.5" and 2.5"
- » Common types of interfaces:
  - » SATA, IDE, SCSI, Fibre Channel

HDD 3.5"



HDD 2.5"



**HDD 1.8**"









#### **Solid State Drive**

- » Records data on memory chips
- » Available in many different form factors and sizes
- » Many available interfaces:
  - » SATA, M.2, PCIe, mSATA, etc.

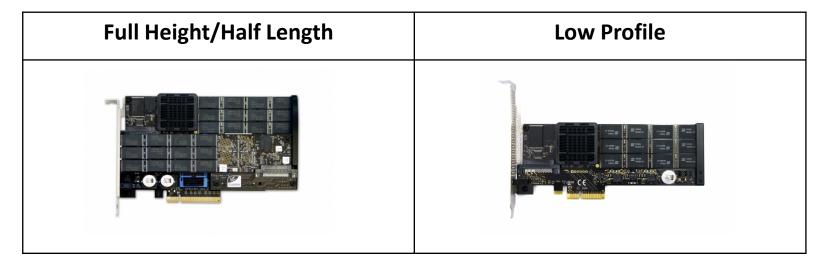






M.2 SSD




mSATA SSD

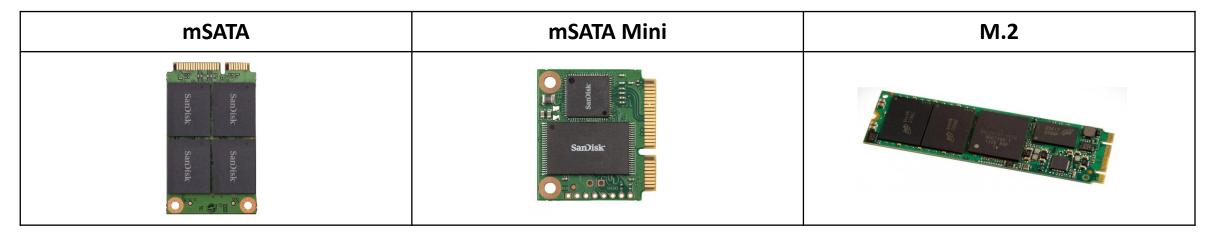






### **Solid State Cards – PCIe Form Factor Examples**




» These are often found in PCs and Servers

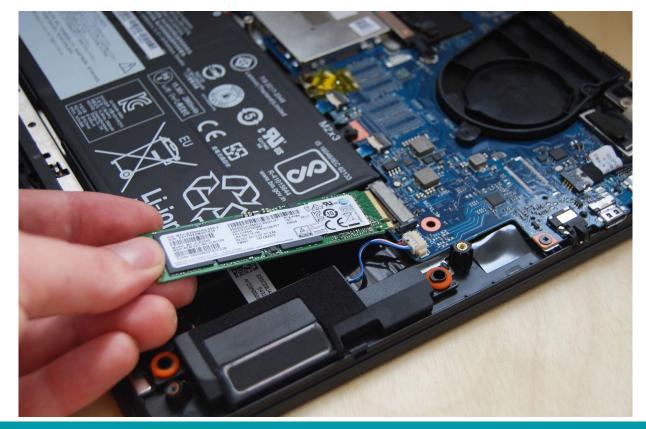






#### Solid State Modules – mSATA, etc.



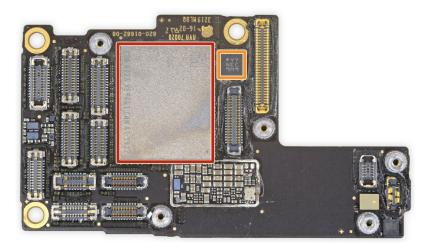

» These are often found in laptops (often under the back panel)







Solid State Modules – M.2 in laptop





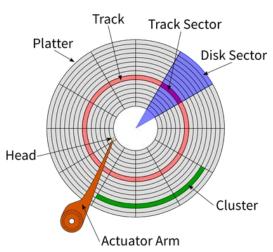


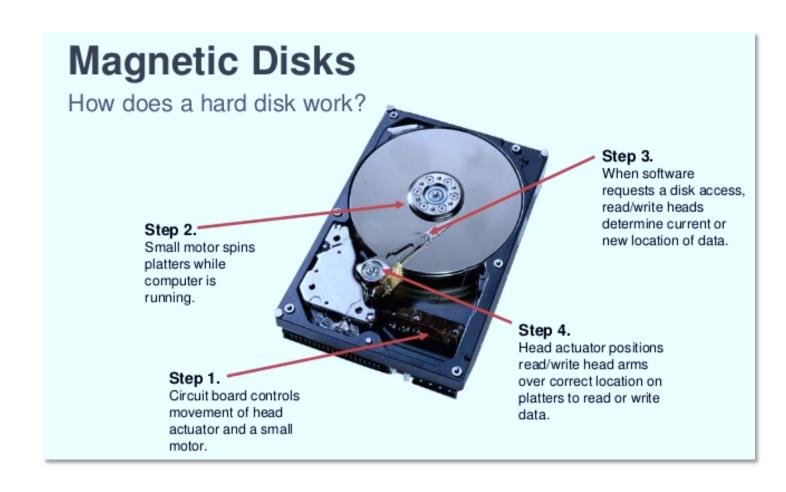



Solid State Drives - iPhone 11








## Difference in how hardware stores information

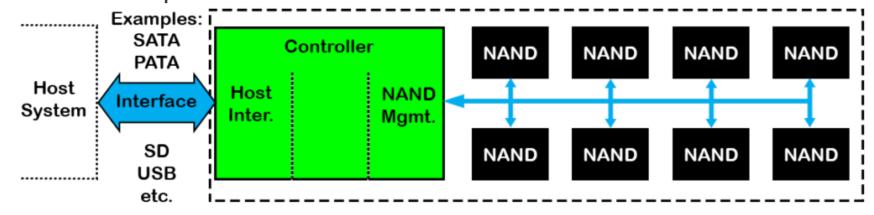
#### **Hard Drive Disks**

- » Use magnetic recording
- » Reads/writes bits (1s & 0s) by changing polarity of bits on the platter









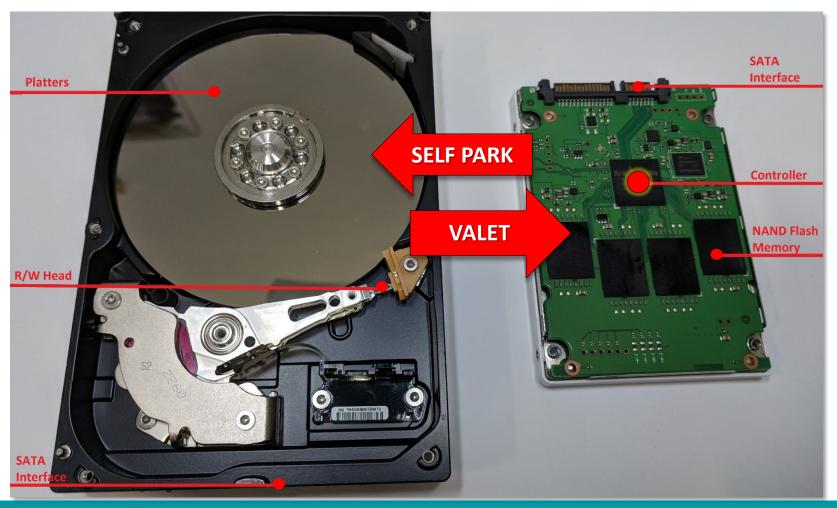



## Difference in how hardware stores information

#### **Solid State Drives**

- » Use **flash** memory
- » Reads/writes bits (1s & 0s) using electrons that are charged or not charged
- » Similar to RAM but is non-volatile memory (NVRAM) meaning it retains information after the device is powered off




Basic Solid State Drive (SSD) Architecture







## Sanitization methods for media – limitations & risks









## Effective data sanitization options

# PROPER



#### **Physical Destruction**

The process of shredding hard drives, smartphones, printers, laptops and other storage media into tiny pieces.



# Cryptographic Erasure (Crypto Erase)

The process of using encryption software (either built-in or deployed) on the entire data storage device, and erasing the key used to decrypt the data.



#### **Data Erasure**

The software-based method of securely overwriting data from any data storage device using zeros and ones onto all sectors of the device.

Graphic from International Data Sanitization Consortium, <a href="https://www.datasanitization.org/">https://www.datasanitization.org/</a>







## Developing your sanitization policy

"This guide will assist organizations...
in making practical sanitization decisions based on categorization of information"

NIST Special Publication 800-88 Revision 1

#### **Guidelines for Media Sanitization**

Richard Kissel Andrew Regenscheid Matthew Scholl Kevin Stine

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.800-88r1

COMPUTER SECURITY

National Institute of Standards and Technology U.S. Department of Commerce







## NIST 800-88

 Practical, real world reference for media sanitization guidance and compliance



- Introduced in 2006, updated Dec, 2014 (Revision 1) to address changing technologies
- <u>Replaced</u> DoD 5220.22M standard in regulatory and certification practice
- Referenced in many other security rules, regulations and standards









## NIST 800-88 sanitization levels

- Clear uses software or hardware products to overwrite user-addressable storage space on media with non-sensitive data. Manufacturer resets and procedures that do not include rewriting might be the only option to Clear the device. Clearing information is a level of media sanitization that would protect the confidentiality of information against a robust keyboard attack.
- Purge may be an overwrite, block erase, or Cryptographic Erase through the
  use of dedicated, standardized device sanitize commands that apply mediaspecific techniques to bypass the typical read and write commands. Purging
  information is a media sanitization process that protects the confidentiality
  of information against a laboratory attack.
- **Destroy** is a physical process that makes data retrieval infeasible using state of the art laboratory techniques. Destruction methods include shredding, incineration, melting and pulverizing. Degaussing is also considered a destruction technique when used properly.

NIST Special Publication 800-88

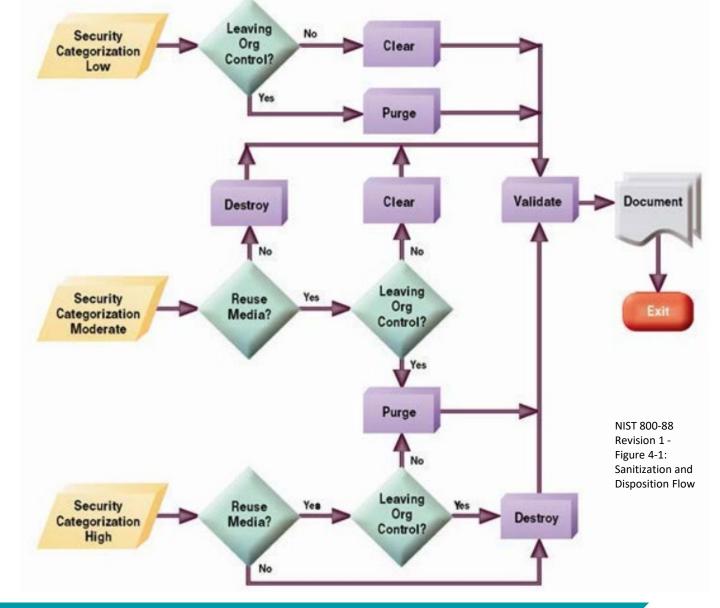
#### **Guidelines for Media Sanitization**

Richard Kissel Andrew Regenscheid Matthew Scholl Kevin Stine

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.800-88r1

COMPUTER SECURITY

National Institute of tandards and Technology
J.S. Department of Commerce








## NIST 800-88

Guidance on
Sanitization and
Disposition
Decisions










# Use NIST guidelines to:

- Set a policy for managing data risk on retired, repurposed and reused assets
- Provide a comprehensive review of what data bearing devices you own and manage
- Develop and implement training and controls (including sanitization methods) consistent with policy
- Ensure proper implementation within and outside of the organization's control









# Compliance with privacy laws



The Criminal Justice Information Services (CJIS) Security policy allows for data sanitization of digital media after a 3 pass wipe.



The FTC manages FACTA and allows for electronic media sanitization.



IRS Publication 1075 allows for media to be sanitized by electronically "purging" the data prior to reuse.



HHS governs
HIPAA and allows
for "clearing"
or "purging" to
safeguard personal
health information.







# Case study: changing from drive shred to reuse

- Healthcare organization
- Security policy remove, inventory, and shred all drives from desktops, laptops, and servers
- Environmental interest reuse is better than recycling
- Hard drives shipped to Cascade loose or in devices
  - 10,929 loose hard drives received (2016 to 2019) all inventoried then shredded at a cost of about \$45,000
  - 11,704 laptops and desktops refurbished and resold 55% included drives from client that were removed and shredded
  - Additional devices demanufactured and recycled (obsolete/damaged)









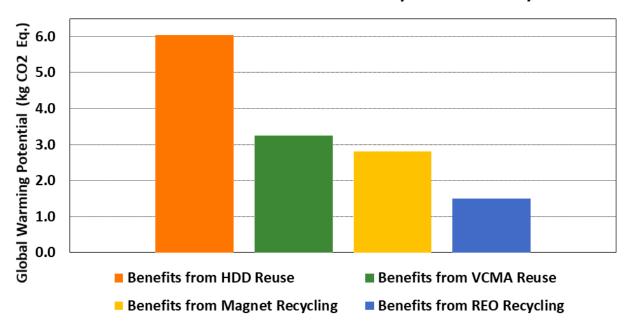
## The opportunity cost of shredding drives

|                                 | Year (quantities) |       |       |       |        |                                |
|---------------------------------|-------------------|-------|-------|-------|--------|--------------------------------|
| Disposition, HDD status, device | 2016              | 2017  | 2018  | 2019  | Total  | Lost Revenue from missing HDDs |
| Hard drive removed by Cascade   | 343               | 573   | 753   | 4,724 | 6,393  | \$35,162                       |
| Computing Device                | 314               | 499   | 575   | 3,860 | 5,248  | \$28,864                       |
| Laptop Computer                 | 29                | 71    | 177   | 847   | 1,124  | \$6,182                        |
| No hard drive in device         | 1,136             | 1,108 | 1,681 | 1,386 | 5,311  | \$29,211                       |
| Computing Device                | 963               | 659   | 1,108 | 950   | 3,680  | \$20,240                       |
| Laptop Computer                 | 173               | 434   | 572   | 435   | 1,614  | \$8,877                        |
| Refurbished and Resold devices  | 1,479             | 1,681 | 2,434 | 6,110 | 11,704 | \$64,373                       |

10,929 loose drive potential lost value

Hard drive replacement value ~ \$5.50 each

- > \$40,000 additional inventory/processing costs (vs. keeping drives in devices)
- ➤ If these drives could have been sold, resale revenue = \$60,000








# **Environmental Impact**

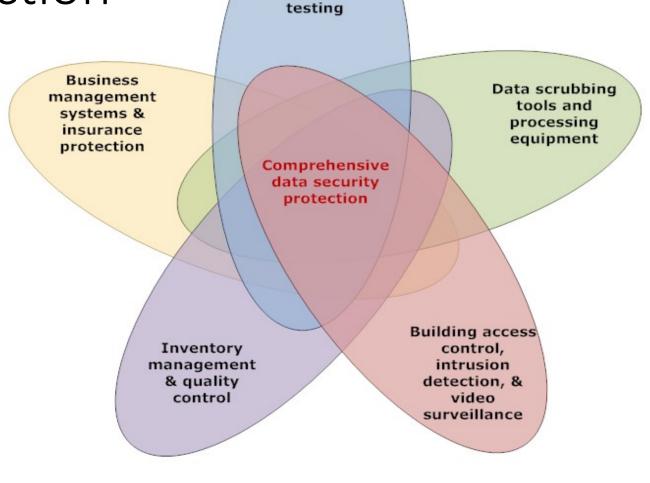
#### **Environmental Benefits of Value Recovery Per HDD Life Cycle**



International Electronics Manufacturing Initiative (iNEMI), "Value Recovery from Used Electronics Project, Phase 2", July 2019

| Case study environmental impacts               |         |                      |  |  |  |  |  |
|------------------------------------------------|---------|----------------------|--|--|--|--|--|
| Number of HDDs removed/loose & shredded        | 17,322  |                      |  |  |  |  |  |
| Enviro benefit per reused drive (vs. disposal) | 6.00    | kg CO <sub>2</sub>   |  |  |  |  |  |
| Enviro benefit per shredded/recycled drive     | 0.02    | kg CO <sub>2</sub>   |  |  |  |  |  |
| Net enviro impact of reuse vs. recycle         | 5.98    | kg CO <sub>2</sub>   |  |  |  |  |  |
| Total net carbon savings of reuse vs. (kg)     | 103,586 | kg CO <sub>2</sub>   |  |  |  |  |  |
| Total net carbon savings of reuse vs. (tons)   | 51.79   | tons CO <sub>2</sub> |  |  |  |  |  |

**Equivalent to keeping 84 cars off the road for one year** 








# Layers of security protection





Employee screening measures,

training & competency







## Considerations when selecting data sanitization methods

- » Multi-stakeholder involvement (IT, security, sustainability, procurement)
- » Understand the risks of data loss throughout lifecycle of products
- » Define a data security policy consistent with risk tolerance and compliance requirements
- » Determine value recovery goals and opportunities within security framework
- » Integrate solutions with providers
- » Evaluate risks and returns to continually improve







## Thank You



Neil Peters-Michaud
CEO
Cascade Asset Management
npm@cascade-assets.com
608-316-6637







